If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15a^2+28a+12=0
a = 15; b = 28; c = +12;
Δ = b2-4ac
Δ = 282-4·15·12
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-8}{2*15}=\frac{-36}{30} =-1+1/5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+8}{2*15}=\frac{-20}{30} =-2/3 $
| t+2/5=t−3 | | 3e+15=6e | | 14=5+9x | | 5x+8=9x+2 | | 14x-23=2x-7 | | 6a+2 =a | | 43=10-3a | | f(-6)=6/2+1 | | 10(2-x)=(x-9) | | 2x+5+7=0 | | -4=-8W+2(w+7) | | a4+3a2-18=0 | | 60=(16-2x)(12-2x)(x) | | 6x-6-2x=x+6+x | | 2x-2x=3-5 | | 4/5x=7/4 | | 2x-x-x=3-5 | | 20x^2+41x+2=0 | | 2x-3/6-x-5/2=x/6 | | 6(42z+2)=3(8z+4) | | -3.3+v/3=-10.8 | | 9p-5=9p-5 | | 3k^2-8k=3 | | 23+5x=-19-2x | | -3(x+7)=3x-15 | | 4u+38=-2(u+2) | | 5(v-3)=3v-7 | | 2x+17=3x-32 | | 8u+3(u+5)=-18 | | -8=-5y+2(y-7) | | (4/2y^2)-(6/3y)-2=0 | | -8=2(v+2)-8v |